
REPORT DOCUMENTATION PAGE AD-A255 494
tarIsM W e I " ltedaan OfWanaman Um ele d to average I howr ONr response endi 11111li 11111111 11 11li Iattw and

mmI-e data needed. am ii-e4n -m - -vw-s te caseaan at InImlai Send - -1- 1111 t pnwfil-n-
k sq suggete to reducing tl burden. to Wamlilmt Hemaouanm sf. S Dervcs e or e tr. tl.a
VA 222124302. AM to e Odice a ManaeWISl a" budgll. Peewark ReduCdian 1a 100 (0704-018,. , ,

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

IAugust 1992 Special Technical

4. TITLE AND SUBTITLE 5. FUNDING NUMBERS
Optimal Primary-Backup Protocols NAG2-593

6. AUTHOR(S)
Navin Budhiraja, Keith Marzullo,

Fred B. Schneider, Sam Toueg

7. PERFORMING ORGANIZATION NAME(6) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION

Keith Marzullo, Assistant Professor REPORTNUMBER

Department of Computer Science

Cornell University 92-1299

9. SPONSORINGIMONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORINGMONITORING
.. .. AGENCY REPORT NUMBER

DARPA/ISTO

11. SUPPLEMENTARY NOTES \ SEP j 1902

12a. DISTRIBUTION/AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

..J d) FR VJI3L1C [ELERBSE

u1 3 IIS AUI ,lO N U NI L M I T E Dj

13. ABSTRACT (Maximum 200 words)

We give primary- ackup protocols for various models of failure. These

protocols are optimal with respect to degree of replication, failover

time, and response time to client requests.

/) 92-24603

14. SUBJECT TERMS 15. NUMBER OF PAGES

18

16. PRICE CODE

17. SECURITY CLASSIFICATION I. SECURITY CLASSIFICATION I. SECURITY CLASSIFICATION 20. MMITATION OF

OF REPORT OF THIS PAGE OF ABSTRACT ABSTRACT

UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED UNLIMITED

NSN 754001.2655 Staaltem Form 2W (Rev. 2-11
Pnoumed b ANSI 31d. Z39.11
2..-I .

AC~i~~jFor

* **

Av'.&'::Lity Codes
' 7,' " I and/or

Optimal Primary-Backup Protocols DI., pecial

Navin Budhiraja*
Keith Marzullo* . I

Fred B. Schneider**
Sam Toueg***

TR 92-1299
August 1992

DCTI

Department of Computer Science
Cornell University
Ithaca, NY 14853-7501

*Supported by Defense Advanced Research Projects Agency (DoD) under NASA

Ames grant number NAG 2-593 and by grants from IBM and Siemens.
**Supported in part by the Office of Naval Research under contract N0001 4-91 -J-

1219, the National Science Foundation under Grant No. CCR-8701103, DARPA/NSF
Grant No. CCR-9014363 and by a grant from IBM Endicott Programming Laboratory.
'Supported in part by NSF grants CCR-8901780 and CCR-9102231 and by a grant

from IBM Endicott Programming Laboratory.

Optimal Primary-Backup Protocols

Navin Budhiraja*, Keith Marzullo*, Fred B. Schneider', Sam Toueg***

Department of Computer Science, Cornell University, Ithaca NY 14853, USA

Abstract. We give primary-backup protocols for various models of fail-
ure. These protocols are optimal with respect to degree of replication,
failover time, and response time to client requests.

1 Introduction

One way to implement a fault-tolerant service is to employ multiple sites that
fail independently. The state of the service is replicated and distributed among
these sites, and updates are coordinated so that even when a subset of the sites
fail, the service remains available.

A common approach to structuring such replicated services is to designate
one site as the primary and all the others as backups. Clients make requests by
sending messages only to the primary. If the primary fails, then a failover occurs
and one of the backups takes over. This service architecture is commonly called
the primary-backup or the primary-copy approach [1].

In [5] we give lower bounds for implementing primary-backup protocols under
various models of failure. These lower bounds constrain the degree of replication,
the time during which the service can be without a primary, and the amount of
time it can take to respond to a client request. In this paper, we show that most
of these lower bounds are tight by giving matching protocols.

Some of the protocols that we describe have surprising properties. In one
case, the optimal protocol is one in which a non-faulty primary is forced to
relinquish control to a backup that it knows to be faulty! However, the existence
of such a scenario is not peculiar to our protocol. As shown in [5], relinquishing
control to a faulty backup is indeed necessary to achieve optimal protocols in
some failure models. Another surprise is that in some protocols that achieve
optimal response time, the site that receives the request (i.e. the primary) is
not the site that sends the response to the clients. We show that this anomaly is
not idiosyncratic to our protocols-it is necessary for achieving optimal response
time.
* Supported by Defense Advanced Research Projects Agency (DoD) under NASA

Ames grant number NAG 2-593 and by grants from IBM and Siemens.
Supported in part by the Office of Naval Research under contract N00014-91-J-
1219, the National Science Foundation under Grant No. CCR-8701103, DARPA/NSF
Grant No. CCR-9014363, and by a grant from IBM Endicott Programming
Laboratory.
Supported in part by NSF grants CCR-8901780 and CCR-9102231 and by a grant
from IBM Endicott Programming Laboratory.

The rest of the paper is organized as follows. Section 2 gives a specification for
primary-backup protocols, Sect. 3 discusses our system model, Sect. 4 summa-
rizes the lower bounds from (5], and Sect. 5 summarizes our results. Sections 6,
7 and 8 describe the protocols that achieve our lower bounds, and Sect. 9 de-
scribes a protocol in which the primary is forced to relinquish control to a faulty
backup. We conclude in Sect. 10. Due to lack of space, the description of some of
the protocols and all proofs are omitted from this paper. See [4] for a complete
description and proofs.

2 Specification of Primary-Backup Services

Our results apply to any protocol that satisfies the following four properties,
and many primary-backup protocols in the literature (e.g. [1,2,3]) do satisfy
this characterization.

Pbl: There exists predicate Prmy, on the state of each site s. At any time, there
is at most one site s whose state satisfies Prny,.

Pb2: Each client i maintains a site identity Desti such that to make a request,
client i sends a message (only) to Desti.

For the next property, we model a communications network by assuming that
client requests are enqueued in a message queue of a site.

Pb3: If a client request arrives at a site that is not the primary, then that request
is not enqueued (and is therefore not processed by the site).

A request sent to a primary-backup service can be lost if it is sent to a faulty
primary. Periods during which requests are lost, however, are bounded by the
time required for a backup to take over as the new primary. Such behavior is
an instance of what we call bofo (bounded outage finitely often). We say that
an outage occurs at time t if some client makes a request at that time but does
not receive a response'. A (k,)-bofo server is one for which all outages can
be grouped into at most k periods, each period having duration of at most A. 2.
The final property of the primary-backup protocols is that they implement a
bofo-server (for some values of k and A).

Pb4: There exist fixed and bounded values k and A such that the service behaves
like a single (k, A)-bofo server.

Clearly, Pb4 can not be implemented if the number of failures is not bounded.
In particular, if all sites fail, then no service can be provided and so the service
is not (k, A) for any finite k and A.

For simplicity, we assume in this paper that every request elicits a response.

2 Therefore, as well as being finite, the number of such periods of service outages can

occur is also bounded (by k).

3 The Model

Consider a system with n. sites and n, clients. Site clocks are assumed to be
perfectly synchronized with real time3 . Clients and sites communicate through a
completely connected, point-to-point, FIFO network. Furthermore, if processes
(clients or sites) pi and pj are connected by a (nonfaulty) link, then we assume
for some a priori known 6, a message sent by pi to pj at time t arrives at pj at
some time t' E (t..t + 6].

We assume that all clients are non-faulty and consider the following types
of site and link failures: crash failures (faulty sites may halt prematurely; until
they halt, they behave correctly) 4, crash +link failures (faulty sites may crash or
faulty links may lose messages), receive-omission failures (faulty sites may crash
or omit to receive some messages), send-omission failures (faulty sites may crash
or omit to send some messages), general-omission failures (faulty sites may fail
by send-omission, receive-omission, or both). Note that link failures and the
various types of omission failures are different only insofar as a message loss is
attributed to a different component. Link failures are masked by adding redun-
dant communication paths; omission failures are masked by adding redundant
sites. As we will see, the lower bounds for the two cases are different.

Let f be the maximum number of components that can be faulty (i.e. f is
the maximum number of faulty sites in the case of crash, send-omission, receive-
omission and general-omission failures, whereas f is the maximum number of
faulty sites and links in the case of crash+link failures).

4 Lower Bounds

In Tab. 1, we repeat the lower bounds from [5] for the degree of replication, the
blocking time and the failover time for the various kinds of failures. Informally,
a protocol is C-blocking if in all failure-free runs, the time that elapses from
the moment a site receives a request until a site sends the associated response
is bounded by C.5 Failover time is defined to be the longest duration (over all
possible runs) for which there is no primary. However, the failover time bounds
only hold for protocols that satisfy the following additional (and reasonable)
property.

PbS: A correct site that is the primary remains so until there is a failure.

3 The protocols can be extended to the more realistic model in which clocks are only
approximately synchronized (7].

4 The lower bounds are also tight for fail-stop failures [10] except for the bound on
failover time.

s We assume that it takes no time for a site to compute the response to a request.

Table 1. Lower Bounds-Degree of Replication, Blocking Time and Failover Time

Failure type IReplicationt Blocking time (C) jFafiover Timeli
Crash n. > f 0 f6

Crash+Link n. > f + 1 0 2fb
Send-Omission n, > f 6 if f =1 2f6

26 if f> 1
Receive-Omission 5 if n. < 2f and f = 1

n, > L'J 26 if n, < 2f and f> I 2f6
1_ _ 0 if n. > 2f I

General-Omission n. > 2f 6 if f = 1 2f6
I_ _ I 26 if f > 1

5 Summary of Results

We first present a primary-backup protocol schema that will be used to derive
the protocols for all the failure models. This schema is based on the properties of
two key primitives, broadcast and deliver, that sites use to exchange messages.
We show that the schema satisfies Pbl-Pb5 by only using these properties inde-
pendent of the particular failure model. Each failure model-crash, crash+link,
send-omission, receive-omission and general-omission-is handled with a differ-
ent implementation of broadcast and deliver, and in all h1rt one case optimal
protocols are constructed.

The protocols for crash and crash+link failures show that all the correspond-
ing lower bounds are tight. The protocol for general-omission failures uses a
translation technique similar to [8], and demonstrates that our lower bounds for
general-omission failures are tight, except for the bound on blocking time when
f = 1. However, for this special case we have derived a different protocol (not
described in this paper) having optimal blocking time. In all failure free runs of
this protocol, the site that receives the request (i.e. the primary) is not the site
that sends the response to the client. We show that this behavior is necessary in
this paper.

We do not show the protocols for send-omission and receive-omission fail-
ures in this paper because they are similar to the protocol for general-omission
failures. These protocols establish that the bounds for send-omission failures
are tight. For receive-omission failures, the lower bound on blocking time when
n. > 2f and the lower bound on failover time are also tight. However, our pro-
tocol does not have optimal replication, as it requires n. > 2f (rather than
n, > L J).

Finally, in 15] we proved that all receive-omission protocols having L2LJ <

n. < 2f necessarily exhibit a scenario in which a non-faulty primary is forced
to relinquish control to a faulty backup. In Sect. 9, we describe such a protocol:
it uses two sites and tolerates a single receive-omission failure. In addition, this

protocol is 6-blocking and so it demonstrates that our lower bound on blocking
time is tight for n, < 2f and f = 1. As in the protocol for general omission when
f = 1, it is the backup that sends responses to clients. This behavior is shown
to be necessary for an important class of protocols.

6 Protocols for the Clients and the (k, A)-bofo server

Property Pb4 requires that the primary-backup service behave like some (k, A)-
bofo server. Figure 1 gives such a canonical (k, A)-bofo server (say s), and Fig. 2
gives the protocol for client i interacting with s. As with any other bofo server,
a client will not receive the response to a request if either the request to s or the
response from s is lost.

initialize()
cobegin

II inform-clients("Dest = a")
I do forever

when received request from client c
response := 1(state, request)
state = state o response
send response to client c

od
coend

procedure initializeO
state :=-c

procedure inform-clients(ic)
send (ic) to all clients

Fig. 1. Protocol run by a single (k, A) bofo-server s

In Fig. 2, response-time corresponds to the amount of time the client has to
wait in order to get the response from s, which is just the round trip message
delay. The exact value for response-time depends on the failure model being
assumed.

7 The Primary-Backup Protocol Schema

We first make the simplying assumption that the links between the clients and
the sites are non-faulty and there are no omission failures between the clients and
the sites (i.e. only the links between sites can be faulty for crash+link failures,

cobegin
11 do forever

if received "Dest = s" then
Dest = s

od
do forever

if want to send request
send request to Desti
if not received response by response-time then

recover() /* call some recovery procedure, which might retry */
else

od
coend

Fig. 2. Protocol run by client i interacting with server s

and omission failures can occur only between sites for omission failures). We
show in Sect. 7.1 how this assumption can be removed.

In order to emulate the server s (and consequently satisfy property Pb4), our
primary-backup protocol consists of n. sites {sl,..., s,,.}, each of which runs
the protocol in Fig. 3. The protocol for the clients remains the same.

initialize(i)
cobegin

II if i = 0 then primary(i) else backup(i)
II delivery-process(i)
Ii failure-detector(i)

coend

Fig. 3. Protocol run by site s, to emulate server s

The procedures primary and backup (shown in Fig. 4) are the same for all
the failure models. On the other hand, the implementation of the procedures ini-
tialize, broadcast(used in Fig. 4), delivery-process and failure-detector
change depending on the particular failure model. However, we ensure that these
different implementations always satisfy a set of properties, called B1-B11 be-
low. We extracted these properties in order to make our proofs modular. In
particular we proved that, independent of the failure model, the protocol in
Figs. 3 and 4 satisfies Pbl-Pb5, as long as the remaining procedures satisfy
Bi-BIl. As a result, we could then prove Pbl-Pb5 for any other failure model

by just ensuring that the implementation of broadcast, delivery-process and
failure-detector for that failure model satisfied 1-B11.

procedure primary(j)
cobegin

II inform-clents("Dest = sj")
II broadcast((aylastlogs, last(state,)),j) /* to all sites */

do forever
when received request from client c

response : I(state,, request)
state, := state, o response
broadcast((log, s3, response),j)
send response to client c

od
coend

procedure backup(k)
do forever

((tag, s,, r),j) :- Deq(Rqueuek)
/* assume that dequeueing an empty queue
does not return any sensible value of tag */

/* synchronizing with the new primary */
if tag = uylastlog then

if r E statek then
if r = last(statek) then skip
else statek := statek \ last(statek)

else statek := statek o r

/* logging response from primary */
if tag = log then statek statek o r

/* becoming the primary */
if Vj < k : FaultYk[sj] then primary(k)

od

Fig. 4. The procedures primary and backup

We now give the properties B1-Bl1. In these properties, d, C and r are some
constants whose values depend on the failure model. Intuitively, d corresponds
to the amount of time that can elapse from the time a message is broadcast to
the time it is dequeued by the receiver, C corresponds to the blocking time and
r corresponds to the interval between successive "I am alive" messages that sites
send to each other (as we will see in the implementation of failure-detector).

When we say that a site "halts", we mean that either the site has crashed or
has stopped executing the protocol by executing a stop. The array of booleans
Faultyk indicates which servers sk believes has halted: Faultyk[sj) being true
implies sk believes that sj has halted. Finally, we define a broadcast by a site to
be successful if the site does not halt during the execution of broadcast.

The properties can be subdivided according to the procedures to which they
relate:
Properties of broadcast and delivery-process:

BI: If si initiates a broadcast b' after broadcast b, then no site dequeues '
before b.

B2: If si initiates a broadcast b at time t, then no site dequeues b after time
t+ d.

B3: If si initiates a broadcast at time t and does not halt by time t + C, then
the broadcast is successful. Furthermore, no broadcast takes longer than C
to complete.

Properties of failure-detector:

B4: If Faultyi[sk] becomes true, then it continues to be true, unless sj halts.
B5: The value of Faultyj [sk] can only change at time t = lr + d for some integer

1>0.
B6: If Faultyj[sk] = true at time t then Sk has halted by time t.
B7: If s. has not halted by time tj, and si, i < j has halted by time t, where

tl= t 2 + r + d, then Faultyj[si] = true by time t1 .

Properties of broadcast and delivery-process interacting with failure-de-
tector:

B8: No correct site halts in procedures initialize, broadcast, delivery-process
or failure-detector.

B9: If si initiates a successful broadcast at time t, then for all non-halted sites
Sk, k > j, Faultyk[sj] = false through time [j" + d.

B10: If sj initiates a successful broadcast b, then for every non-halted site sk :
(Faultyk[s,] = true) * (sk has dequeued b).

Bl1: If sj initiates a broadcast b at time t and sk, k > j broadcasts b', then
either no site dequeues b after b', or FaultYk[sj] = false through time t + d.

7.1 Outline of the Proof of Correctness

We now informally argue that the protocol in Figs. 3 and 4 satisfies Pbl-Pb5 as
long as the procedures initialize, broadcast, delivery-process and failure-
detector satisfy Bi-BlI.

Define: Prmy,, at time t E sj has not halted by time t
A Vk < j : Faultyilsk] = true at time t.

From the above definition, Pbl can now be seen from B6 and the backup
protocol in Fig. 4. Pb2 trivially follows from Fig. 2. Pb3 follows from Fig. 4 as

no request is sent to a site si before si becomes the primary. Also, Pb5 holds
(from B8 and Fig. 4) as a correct primary continues to be the primary. We now
show Pb4.

In order to show Pb4, we need to show two things-the state of the new
primary is consistent with the state of old primary; and all outages are bounded.
We first show that the states are consistent.

Starting at the top of Fig. 4: when a site si becomes the primary, it first
informs the clients of its identity by calling inform-clients. For now, ignore
the broadcast of (mylastlog,sj,-) by primary sj.

Whenever si gets a request from a client, it computes the response, changes
state, broadcasts the log to the backups and sends the response back to the
client. It can be seen from Fig. 4 that if primary si sends a response r to the
client, then sj must have executed a successful broadcast of (log, sj, r). This fact
and properties B1,B2,B9 and B10 imply that (log, sj, r) must also have been
dequeued by any backup sk before sk becomes the primary. Thus, the state of sk
will continue to be consistent with the state of sj iff the states were consistent
when s, became the primary. We show this as follows.

Informally, the states of si and sk could be inconsistent when si becomes
the primary for the following reason. Consider a scenario in which some primary
si crashes during the broadcast of (log,si, r) for some r. It is possible that sk
received (log, si, r) and sj did not. As a result, the states of sj and sk now differ.
It is for this reason that sj broadcasts (mylastlog, sj, r') where r' = last(statej)
on becoming the primary. On receiving this, sk sees that r' : last(statek) =
r and removes r from its state. As a result, statej and statek become equal.
Similarly, sk would add r to its state had sj, and not sk, received (log, si, r).

In the scenario described in the last paragraph, response r is never sent to
the client (i.e. there is a service outage). We now show that such outages are
bounded. si did not send the response, and so by B3, must have halted by time
t (say). Now from B7 either si+1 halts or becomes the primary by time t + r + 6.
Since no correct site halts (by B8 and Fig 4), and the number of faulty sites are
bounded by f, there eventually will be a time when there is a correct primary
and no more outages occur.

From B3, the protocol C-blocking. Furthermore, it can be shown from B7,
B8 and Fig. 4 that the failover time of the protocol is f(d + r) for arbitrarily
small and positive r.

However, the primary procedure in Fig. 4 does not work if there are message
losses between the clients and the sites (due to link or omission failures). For
example, a non-faulty primary might omit to receive all requests from a client
due to a failure, violating Pb4. Similarly, inform-clients might omit to inform
some of the clients. However, it is relatively easy to account for these failures
when clients are non-faulty. Assume that there is an upper bound (say G) be-
tween any two requests from a client and that requests carry sequence numbers.
If the primary does not receive any requests from a client during an interval of
length G or if the primary receives some request with a sequence number gap,
then the primary halts. Similarly, the primary can detect that a response was

lost by having clients acknowledge responses. If such an acknowledgement is not
received, then again the primary halts. Properties Pbl-Pb5 can again be shown
to be true if we make the above modification in Figs. 2 and 4.

8 Implementation for the various Failure Models

In this section, we show how to implement B1-Bl for the various failure mod-
els.

8.1 Crash Failures

The procedures implementing B1-Bl for crash failures are given in Fig. 5.
Whenever we say that a site "delivered M", we mean that the procedure deliver
has been called with M. Enq adds an element to the head of a queue and Deq
dequeues an element from the tail.

procedure initialize(k)
statek:= Rqueuek :=c
Vi: Faultyk(s,]:= false

procedure broadcast(M, k)
send M to all sites

procedure deliver (M, k)
Let M be of the form (tag, -, -)
if tag E flog, sylastlog} then Enq(Rqueuek, (M, k))

procedure delivery-process(k)
do forever

if received M then deli ver(M, k)
od

procedure failure-detector(k)
cobegin

II for i := 0 to oo
when current-time = it: send (alive, sk, it) to all sites

II for i:= 0 to co
when current-time = ir + d:

Vj : if not delivered (alive, sj, ir) then Faultyk[s] := true
coend

Fig. 5. Procedures for crash failures

We now informally argue that B1-B1 hold for this implementation if d = 6
and C = 0. B1 holds as channels are FIFO and, B2 holds as d = 6 and the
maximum message delivery time is also 6. B3, B4 and B5 can be seen trivially.
B6 and B7 can be seen from failure-detector as there are no message losses
and message delivery time is atmost 6. B8 holds trivially. It can be shown that
if sj halts at time t, then no site sets Faulty[sj] to true before time t + 6. B9,
B10 and B1l now follow.

The procedures in Fig. 5 require n. > f, and so the lower bound on the
degree of replication is tight. Since C = 0 and d = 6, from Sect. 7.1, the lower
bounds on blocking time and failover time are tight as well.

8.2 Crash+Link Failures

The procedures in Sect. 8.1 do not work if links can fail. For example, if si
sends a message to sk then the message might not reach sk due to a link failure
(which will violate B6 and B10). We therefore replace the implementation in
Fig. 5. with the one in Fig. 6, except that deliver is the same as before. For
this implementation, d = 26 and C = 0. These procedures use fifo-broadcast
and fifo-deliver in Fig. 7 which ensure that intermittent link failures become
permanent failures: if sj fifo-broadcasts a message m to sk and sk omits to
fifo-deliver m, then sk will not fifo-deliver any subsequent message from sj.

It can be shown (proof omitted) that this new implementation again satisfies
B1-Bll if n, > f + 1. Informally, this is true because of the following reason.
Whenever sj initiates a broadcast of M at time t, it sends M to all sites, and the
sites then relay M to all other sites. Since n. > f + 1, there is always at least one
non-faulty path between any two non-crashed sites, where a path consists of zero
or one intermediate sites. Therefore, if sj does not crash during the broadcast,
then all non-crashed sites will deliver M by time t + 26. Furthermore B1 will be
satisfied because of the FIFO properties of fifo-broadcast and fifo-deliver.

This crash+link protocol requires n, > f + 1, is 0-blocking (since C = 0),
and has a failover time of f(26 + r) (since d = 26). Thus, all lower bounds for
crash+link failures are tight.

8.3 General-Omission Failures

The implementation of the procedures for general-omission failures is given in
Figs. 8 and 9, except delivery-process which is the same as Fig. 6. Whenever,
we say that a site "fifo-delivered M", we mean that the procedure fifo-deliver
was called with M. These procedures were developed using a technique similar
to [8] (although modified to work in our non-round-based model) which requires
n. > 2f and d= 26.

procedure initialize(k)
statek :=RqueUek :=Dqueuek :
Vi :Fault Yk[si] :=false
last-sentik: V3 :ezpectedij] :=0

procedure broadcast(M, k)
time :=current-time
flfo-broadcast(init, M, sk, time)

procedure delivery-process(k)
cobegin

Iflfo-delivery-process(k)
Ido forever

(tag, M, -, t) :Deq(DqueUek)
if tag = init then fifo-broadcast (echo, M, sk, t)
if tag = echo and not dequeued (tag, M, -, t) before then deliver (M, k)

od
coend

procedure failure-detector(k)
A'= (alive, s,sir)

cobegin
for i := 0 to o

when current-time = ir: flfo-broadcast(init, Ak, 5k, ir)
for i := 0 to oc

when current-time = ir + d:
Vj :if not delivered A' then Fault yk[sI : true

coend

Fig. 6. Procedures for crash+Iink failures

procedure fifo-broadcast(tag, M, Sk, t)
send (tag, M, 5k;, t,last-sefltk) to all
last-sentk :=last-sentk + 1

procedure fio-deliver (tag, M, si,t)
Enq(Dqueuehk, (tag, M, sj, t))

procedure fifo-delivery-process (k)
do forever

if received (tag, M, sj, t, last,) then
if (last, #expectedkUl) then skip
else

ezpectedkj] := ezpectedk[j] + 1
Mo-deliver (tag, M, s, t)

od

Fig. 7. Procedures for crash+link failures

procedure initialize(k)
statek := Rqueuek - Dqueuek :=
Vi: Faultyk[Si] := false
current-primarf.=last-sent := Yj : expectedk]: 0

procedure broadcast(M, k)
time := current-time
fifo-broadcast(init, M, sk, time)
if by time + d fifo-delivered (echo, M, s,, time)

for at least n. - f different j then return
else stop

procedure deliver (M, k)
Let M be of the form (tag, si,-)
if tag E {log, xylastlog} then

if j <current-primary then return
else

current-primary.= j
Enq(Rqueueh, (M, k))

Fig. 8. Procedures for general-omission failures

We now briefly argue that these procedures satisfy B1-Bl. The detailed
proof is omitted from this paper. Had we used the implementation of broadcast
in Fig. 6, B10 (in particular) would be violated because a faulty primary sj
might omit to send the logs to the backups. Therefore, in Fig. 8, sj stops in
the broadcast of a response (say r) if less than n. - f sites fifo-deliver and
subsequently fifo-broadcast r. However, even ifs, does not stop in the broadcast,
a faulty (but non-crashed) site sk might still omit to deliver r, due to a receive-
omission failure, and later become the primary were sj to fail. To prevent this, sk

ensures (in procedure failure-detector) that it fifo-delivers some message (say
m') from at least one of the above n, - f sites that had earlier fifo-broadcast r. If
sk does not receive such an m', then sk stops. Now, if Sk omitted to fifo-deliver
r, then by the properties of fifo-broadcast and fifo-deliver, sk cannot fifo-deliver
m' and would stop (and, therefore, cannot become the primary). Property B6

is similarly satisfied by ensuring that sites detect their own failure to send or
receive alive messages and therefore stop.

These procedures require n. > 2f, d = 26 and C = 2b. Furthermore, we have

developed a protocol for f = 1 (omitted in this paper) that is 6-blocking. Thus,
we establish that all lower bounds for general-omission failures are tight.

As mentioned earlier, the 6-blocking protocol for f = 1 has scenarios in which
the site that receives the request is not the site that responds to the clients. This
is in fact necessary. Define a protocol to be "pass the buck" if in any failure-free
run of the protocol, the site that receives a request is not the site that sends the
corresponding response.

procedure failure-detector(k)
Vi, : A:= (alive, s,, iT)
Vi, j :F' : (f ault, sj,,ir)

cobegin
II for i:= 0 to oo

when current-time = it: fifo-broadcast(init, Ak, sk, iT)
for i := 0 to oo

when current-time = ir + 6:
Vj : if not fifo-delivered (init, A', s, it) then

fifo-broadcast (echo, F , sk, it)
I for i := 0 to oo

when current-time = ir + d:
witnessh[k] := {sjfifo-delivered (echo, A', s, ir)}
V3 $ k: witnessk[U] := {slfifo-delivered (echo,As,,ir) or

fifo-delivered (echo, F;, s, ir)}
if 3j: IwitnesskU]l < n. - f then stop
if 3j : not delivered A' then Faultyk[sj] := true

coend

Fig. 9. Procedures for general-omission failures

Theorem 1. Any C-blocking protocol, where C < 26, for send-omission failures
is "pass the buck".

Proof. Omitted in this paper. See [4]. 0

8.4 Other Failure Models

The implementations of the procedures for send-omission and receive-omission
failures are similar to those for general-omission failures and so are omitted
from this paper. For receive-omission failures, the lower bound on the degree
of replication and the lower bound on blocking time when n, < 2f and f > 1
are not tight. Finding optimal protocols remains an open problem. However, the
lower bound on failover time for receive-omission failures, and all lower bounds
for send-omission failures are tight.

9 A Surprising Protocol

We now describe a 6-blocking protocol tolerating receive-omission failures for
the special case of n. = 2 and f = 1. This protocol is complex, and so we omit
the detailed description and only outline the protocol's operation here. This
protocol shows that our lower bound on blocking time when n, < 2f and f = 1
is tight. The protocol has the odd (yet necessary as shown in [5]) property that
a non-faulty primary is forced to relinquish to a faulty backup. Furthermore, the
protocol is "pass the buck". We, however, show that most 6-blocking protocols
tolerating receive omission failures have to be "pass the buck".

Informally, let r be the maximum time between any two successive client
requests (possibly from different clients), and let D be such that if some site s
becomes the primary at time to and remains the primary through time t > to+ D
when a client i sends a request, then Des4- = s at time t. We write D < F to
mean that D is bounded and r is either unbounded or bounded and greater
than D. Then

Theorem2. Any C-blocking protocol, where C < 26, for receive-omission fail-
ures with n, < 2f and D < F is "pass the buck".

Proof. Omitted from this paper.

Whether a protocol has to be "pass the buck" when the relation D < F does
not hold is an open question.

We now describe the protocol. There are two sites so and sj. They commu-
nicate with each other using fifo-broadcast and fifo-deliver shown in Fig. 7.
Henceforth, when we say that a site sends a message to the other, we will mean
that the message is sent with fifo-broadcast and other site receives it with
fifo-deliver.

In a failure-free run of this protocol, since the backup responds to the client,
the primary forwards any response to the backup (with a green tag as we see
below) and the backup sends this response to the client. However, if there is
a failure, then the primary responds to the clients. In this case, the primary
forwards a response to the backup with a red tag. The backup does not forward
a response to the client if the response has a red tag.

Let so initially be the primary. Whenever so receives a request from the
client, it computes a response r, changes state, and sends (green,r) to si. Upon
receiving this message, s, updates its state, acknowledges to so, and then sends
r to the client. Because it is the backup that responds to the client, the protocol
is 6-blocking. Site so processes a new request only after receiving the acknowl-
edgement from s, for the previous request. Finally, so periodically sends alive
messages to si, and s, acknowledges these messages.

Suppose that so does not get sl's acknowledgement for some message, say,
(green,r) (the argument is similar if no acknowledgement is received for an
alive message). There are three possibilities: (1) s, has crashed, (2) s, omitted
to receive (green,r) and so did not send the acknowledgement, (3) So omitted to
receive the acknowledgement. so now waits until it is supposed to send the next
alive message. so sends this alive message and waits for an acknowledgement.
We now consider the above three cases separately.

Case 1: s, has crashed. As a result, So does not receive the acknowledgement
to the alive message. so continues as the primary. From then on, whenever so
receives a request from the client, it computes the response r, sends (red,r) to
sj, and then sends the response back to the client. Also, so continues to send
alive messages. Since so is correct, it can continue like this forever.

Case 2: sl is faulty and omitted to receive (green,r). By the property of fifo-
broadcast and fifo-deliver, s, will not receive the alive messages that so sends.

s, concludes that so has crashed, sends ("s is primary") to so and becomes the
primary. After that, it behaves like so in case 1 above (including sending alive
messages to so). Since so is correct, it receives ("si is primary") (as opposed to
case 1) and so it becomes the backup. Also, since so is correct it will not omit
to receive (red,r) messages that s1 sends and so so keeps its state consistent
with si. Subsequently, if so stops receiving alive messages from si, then s, has
crashed and so becomes the primary once again.

Case 3: so is faulty. Since s, is correct, it receives the alive message from so,
sends the corresponding acknowledgement and remains the backup (as opposed
to case 2). However, by the property of fifo-broadcast and fifo-receive, so will
not receive this acknowledge to the alive message (or the ("s, is primary")
message), and so it behaves as in case I and continues as the primary. Similar to
case 2, s, receives all (red,r) messages that so sends and so its state is consistent
with so. Finally, s, becomes the primary if it stops receiving alive messages
from SO.

Case 2 in the protocol is the odd scenario in which the correct primary so
is being forced to relinquish to si, known to be faulty. However, this scenario is
not something peculiar to our protocol. We showed in [5] that relinquishing to a
faulty backup is necessary when n, < 2f.

10 Discussion

In [5], we present lower bounds for primary-backup protocols which constrain
the degree of replication, the failover time, and the amount of time it can take
to respond to a client request. In this paper, we derive matching protocols and
show that all except two of these lower bounds are tight. Furthermore, we show
that in some cases the optimal response time can only be obtained if the site
that receives the request is not site that sends the response to the clients.

We have attempted to give a characterization of primary-backup that is broad
enough to include most synchronous protocols that are considered to be instances
of the approach. There are protocols, however, that are incomparable to the class
of protocols we analyze as these protocols were developed for an asynchronous
system [6,9]. We are currently studying possible characterizations for a primary-
backup protocol in an asynchronous system and expect to extend our results to
this setting.

References

1. P.A. Alsberg and J.D. Day. A principle for resilient sharing of distributed resources.
In Proceedings of the Second International Conference on Software Engineering,
pages 627-644, October 1976.

2. J.F. Barlett. A nonstop kernel. In Proceedings of the Eighth ACM Symposium on
Operating System Principles, SIGOPS Operating System Review, volume 15, pages
22-29, December 1981.

3. Anupam Bhide, E.N. Elnozahy, and Stephen P. Morgan. A highly available net-
work file server. In USENIX, pages 199-205, 1991.

4. Navin Budhiraja, Keith Mazullo, Fred B. Schneider, and Sam Toueg. Optimal
primary-backup protocols. Technical report, Cornell University, Ithaca, N.Y.,
1992. In preparation.

5. Navin Budhiraja, Keith Marzullo, Fred B. Schneider, and Sam Toueg. Primary-
backup protocols: Lower bounds and optimal implementations. In Proceedings of
the Third IFIP Working Conference on Dependable Computing for Critical Appli-
cations, 1992. To Appear.

6. Timothy Mann, Andy Hisgen, and Garret Swart. An algorithm for data replication.
Technical Report 46, Digital Systems Research Center, 1989.

7. Gil Neiger and Sam Toueg. Substituting for real time and common knowledge
in asynchronous distributed systems. In Sixth ACM Symposium on Principles of
Distributed Computing, pages 281-293, Vancouver, Canada, August 1987. ACM
SIGOPS-SIGACT.

8. Gil Neiger and Sam Toueg. Automatically increasing the fault-tolerance of dis-
tributed systems. In Proceedings of the Seventh ACM Symposium on Principles
of Distributed Computing, pages 248-262, Toronto, Ontario, August 1988. ACM
SIGOPS-SIGACT.

9. B. Old and Barbara Liskov. Viewstamped replication: A new primary copy method
to support highly available distributed systems. In Seventh ACM Symposium on
Principles of Distributed Computing, pages 8-17, Toronto, Ontario, August 1988.
ACM SIGOPS-SIGACT.

10. Richard D. Schlichting and Fred B. Schneider. Fail-stop processors: an approach
to designing fault-tolerant computing systems. ACM Transactions on Computer
Systems, 1(3):222-238, August 1983.

